
ISRAEL J O U R N A L  OF MATHEMATICS 107 (1998), 319-325 

APERIODIC TILINGS OF THE HYPERBOLIC 
PLANE BY CONVEX POLYGONS* 

BY 

G. A. MARGULIS** 

Department of Mathematics, Yale University 
New Haven, CT 06520, USA 

e-mail: margulisOmath.yale.edu 

AND 

S. MOZES l 

Institute of Mathematics, The Hebrew University of Jerusalem 
Givat Ram, Jerusalem 91904, Israel 

e-mail: mozes@math.huji.ac.il 

A B S T R A C T  

Several aperiodic hyperbolic tiling systems consisting of a single convex 
tile are constructed. 

The main purpose of this paper  is to construct for each n >_ 3 a convex hyperbolic 

n-gon P such that  P can tessellate the hyperbolic plane H 2 but cannot tessellate 

any compact  quotient of ~ .  We refer to [GS] for definitions and discussions of 

various tilings. Let X be either R d or H 2 . An X-ti l ing system is a finite collection 

of subsets of X,  called "tiles", each being homeomorphic to a compact  ball in 

X .  A tessellation by these tiles is a decomposition of X,  or more generally of a 

quotient of X,  into a union of isometric copies of the various tiles intersecting only 

at their boundaries. A tiling system is called aperiodic if no compact  quotient 

of X (by a discrete group of isometries acting freely on X) may be tessellated 
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by the tiles of the system. The first example of an aperiodic R2-tiling system 

was given by R. Berger, [Ber]. Tile well known example of Penrose provides 

an aperiodic/l~2-tiling system consisting of two tiles. Those, however, are not 

convex. The minimal known example, due to R. Ammann, of an aperiodic R 2- 

tiling system consisting of convex polygons contains 3 polygons: a pentagon and 

two hexagons, cf. [GS] pages 547-549. It is an open question whether there exists 

an aperiodic tiling system for I~ 2 consisting of a single tile. For R 3 there is an 

example due to J. H. Conway, following P. Schmitt, cf. [Rad2] [Sen], of a single 

convex polytope which can tessellate R a but not any compact 3-dimensional 

torus. R. Penrose gave in [Pen] an example of a single (non-convex) hyperbolic 

tile which can tessellate ~-~ but not any compact quotient S = F \H  2. J. Block 

and S. Weinberger have proved the existence of an aperiodic tiling system for 

any "non-amenable" space, [BW]. 

In both the Penrose example, [Pen], and the examples due to Block and 

Weinberger, the fact that the corresponding tiling systems cannot tessellate a 

compact quotient follows from a certain "imbalance" of the tiles. The tile con- 

structed by Penrose has one outgoing indentation and two ingoing indentations. 

In any tessellation by copies of this tile the outgoing indentation of each tile must 

fit into an ingoing indentation of some tile. Since in a tessellation of a compact 

quotient one has only finitely many tiles, the number of incoming indentations 

is greater than that of the outgoing ones leading to an imbalance, showing that 

such a tessellation cannot exist. This idea plays a role also in some of the fami- 

lies of aperiodic polygons we shall construct. Another method of showing that  a 

single-tile ~ - t i l i n g  system is aperiodic is based on the following: 

LEMMA 1: A hyperbolic tiling system consisting of a single tile whose area is not 

a rational multiple of lr is aperiodic. 

Proof" By a well known corollary of the Gauss-Bonnet formula the area of 

compact quotient of ~ is an integer multiple of ~r. | 

The following proposition allows us to show that certain polygons can tessellate 

the hyperbolic plane. 

PROPOSITION 2: Let Q be a convex polygon in P~ having n >_ 4 vertices. Denote 

by ai, 1 < i < n, its angles. Assume that: 

(1) All the sides of Q are of equal length. 

(2) Forany i ,  j E { 1 , 2 , . . . , n } ,  a~ + a  i _< 7r. 

(3) For any i l , i2,ia 6 { 1 , 2 , . . . , n }  there exists r > 3 and ij 6 { 1 , 2 , . . . , n } ,  

4 <_ j <_ r such that ~ = 1  aij = 2~r. 
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(Indices appearing in (2) and (3) are not necessarily distinct.) Then there is a 

tessellation of H 2 by copies of Q. 

Proof: We shall construct an increasing sequence of finite tessellations f~k 

consisting of copies of Q. We shall use "~k" to refer both to the tessellation 

and to the union of the tiles appearing in it. Let f~l consist of a single copy of 

Q. Assume by induction that: 

(1) f~k is a compact convex polygon. 

(2) Each vertex on the boundary of f~k belongs to at most two copies of Q 

belonging to the tessellation forming f~k- 

(3) There exists a vertex of f~k belonging to a single copy of Q. 

Observe that ~1 satisfies these assumptions. 

Let us denote the vertices along the boundary of f~k cyclically by vl, v2,. �9 �9 vm. 

Without loss of generality we may assume that the vertex vm belongs to a single 

copy of Q. Consider the vertex vl. Since there are at most two copies of Q 

(both belonging to ~k) containing it, we may, using assumptions (3) and (1) of 

the proposition, place at this vertex new copies of Q completing the angle at 

this point to 2~r. Observe also that, since by the induction hypothesis (1) ~k is 

convex, adding these new tiles forms an admissible tessellation, i.e., there is no 

overlap between tiles. Next we consider the vertex v2. Observe that  this vertex 

belongs to two or three copies of Q. Again using the hypotheses (3) and (1) of the 

proposition as well as the convexity of f~k we can add new copies of Q touching 

v2 tessellating the whole 2~r angle around it. We continue this way treating the 

vertices vi sequentially. Observe that at the last step we will have three copies 

of Q containing the vertex vm. The resulting tessellation is f~k+l- The induction 
hypotheses (2) and (3) follow immediately from the construction. The convexity 

of f~k+l follows from assumption (2) of the proposition together with the fact 

that  at each boundary the vertex of f~k+l belongs to at most two copies of Q. 
| 

COROLLARY 3: Let Q be a convex hyperbolic n-gon (n >_ 4) with equal sides 
n and angles ax, a2, . .  . , an, such that ~ i=1 ciai = 27r for some integers ci ~_ 3 and 

aj <_ ~r /2, 1 <_ j <_ n. Then there ex/sts a tessellation of [lI 2 by copies of Q. 

THEOREM 4: For every n ~_ 3 there exists an aperiodic tiling system whose set 

of tiles consists of a single convex hyperbolic n-gon. 

Proof: We shall treat separately the cases of n -- 3, 4 and of n _7 5. 

n -- 3, 4: Let ~/ and fl be positive numbers such that  73' + 12fl = 27r and 

3' g Q~r. It is a well known fact of hyperbolic geometry that,  given any three 
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angles whose sum is smaller than 7r, there exists a triangle with these angles. 

Therefore there exists a hyperbolic isoceles triangle P = A A B C  such that its 

angles are Z C A B  = % Z A B C  = Z B C A  = /3. Let Q = CqABDC be the 

quadrangle consisting of A A B C  together with an isometric triangle A D C B  (see 

Figure 1). 

B 

C 
Figure 1. 

The quadrangle Q has equal sides and its 4 angles are a l  = oa = 7, 02 = 04 = 

2/3. Observe that: 

(1) 4Ol + 302 + 303 + 304 = 77 + 12/3 = 2~r. 

(2) 01 + 02 + 03 + 04 r QTr. 
The second property follows from the choice of 01 = 7 r QTr and the equality 

01 + 3 ~ = 1  o~i = 27r. By the Corollary the tiling system consisting of the single 

quadrangle O admits a tessellation of the hyperbolic plane. By Lemma 1 it 

defines an aperiodic tiling system. It follows that the tiling system consisting 

of the triangle A A B C  admits a tessellation of H 2. Again by Lemma 1 it is 

aperiodic. 

n > 5: We show now the existence of an equilateral hyperbolic n-gon whose 

angles ai ,  1 < i < n satisfy: 
n 

(1) 401 + 3 Y~i=2 ai = 27r. 

(2) ol r @ .  

(3) For any 1 <_ i , j  <_ n, ai  + a j  <_ 7r. 

Fix some angle 9 r Q~r such that 

27r - ~ 2~r 
10 < ~ 0 < - -  

3n + 1 3n + 1" 

Since 0 < (n - 2)Tr/n there exists an equilateral hyperbolic n-gon Q' all of whose 

angles equal 0. Denote its vertices by A1, A2, A~, A~, A5 , . . . ,  An. We will deform 

the polygon Q' to construct a new equilateral hyperbolic n-gon Q satisfying the 

above conditions. To do this we fix all vertices except ' ' A3, A 4 and change these 

vertices in such a way that the lengths of all sides are preserved and the angles 

0 1 , 0 2 , . . . ,  0~ of the new polygon Q with vertices A1, As, A3, A4 , . . . ,  A~ satisfy 

the above properties. 
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' ' A 2A 3 Consider the quadrilateral A2, A 3, A 4, 5. It has two side lengths: A ' = 

A3A4r ~ = X4A 5 = a and A5A2 = b. Let O denote the center of the regular poly- 
! ! 

gon with vertices A1, A2, A 3, A 4, A5 , . . . ,  An. Consider the two isoceles triangles 

/~A2OA5 and ~A~3OA~; their bases are of lengths b and a, respectively, and all 

the other sides are of equal length. Thus as ZA2OA5 > AAt3OA~ it follows that  

b > a. Holding the vertices A2 and As fixed, we can continuously move A~ along 

a certain are of the hyperbolic circle of radius a around A2 and A~ along an arc 

of the hyperbolic circle of radius a around As so that the distance between these 

points remains a. Note that  since b > a we can reach in this way a degenerate 

quadrangle in which the vertices A2, A~ and A~ lie on a straight line�9 Note that  

in this degenerate quadrangle the sum of the angles is greater than ~. In the 

original quadrangle the sum of the angle was strictly smaller than 

87r 7r 
4 0 < - - < T r - - -  

3n + 1 10 

Therefore at some intermediate position A3, A4 we have increased the sum of the 

angles of this quadrilateral (and hence of the polygon Q') by 2~r-(3n+1)0 < ~r/10. 

This gives a hyperbolic n-gon Q satisfying the required properties. | 

We remark that  these aperiodic hyperbolic tiling systems consist (for n > 4) 

of equilateral n-gons. We construct next for every n > 5 a family of convex 

hyperbolic n-gons which are (generically) not equilateral, and such that  each of 

the corresponding single-tile tiling systems admits a tessellation of H 2 and is 

aperiodic. We use the upper half plane model for H 2 . 

THEOREM 5: Let n >_ 5 be an integer. For any positive real number a let Pa be 

the convex hyperbolic polygon whose vertices are Ad = (j - 1)a+i ,  1 ~_ j ~ n -  2, 

An-1 = ( n - 3 ) a + ( n - 3 ) i  andA,~ = ( n - 3 ) i .  For e v e r y a  > 0 there exists 

a tessellation of  H e by copies of  Pa. There exists an >_ 0 such that for almost 

every a > 0 and for every 0 < a < c~ the corresponding single-tile tiling system 

is aperiodic. 

Proof: Let Fa be the (discrete) semigroup of isometries of H 2 generated by the 

transformations 

T z  - ~_l 3 z' Saz = z + ( n -  3)a and S a l z  = z -  ( n -  3)a. 

It is easily checked that  the collection of translates {T-kVPal "~ e Fa, k ~ 0} 

forms a tessellation of the hyperbolic plane by copies of Pa. Considering the 

dependency of the angles of Pa on a it follows that  the area of P~ is a continuous 
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strictly increasing function of a. Thus for almost every a > 0 the area of Pa is 

not a rational multiple of 7r, hence by Lemma 1 the corresponding tiling system 

is aperiodic. To show that  for every sufficiently small a > 0 the corresponding 

tiling system is aperiodic, we color the edge AnA,~-I blue and each of the edges 

AjAj+I  for 1 _< j _< n - 3 red. Thus the polygon Pa has n - 2 colored edges of 

length x and 2 non-colored edges both of length y = log(n - 3). Observe that  as 

a tends to 0 we have: 

(1) The side length x tends to 0, thus for sufficiently small a, x < y/5. 

(2) The angle at each of the vertices Aj,  2 < j < n - 3 approaches 7r, and the 

angles at the other four vertices approach r / 2 .  

By examining the ways the various angles of Pa may be combined to sum to 

~r or 2% one can verify that  in any tessellation by copies of Pa: 

(1) Each copy of a vertex Aj,  2 < j < n - 3 cannot meet the interior of an 

edge. 

(2) A copy of a colored edge must meet a copy of a colored edge. 

(3) A colored edge must meet an edge of the other color. 

Now we can apply the same "imbalance" argument as in [Pen] to conclude that  

P~ cannot tessellate any compact quotient of $]I 2. Indeed, in such a tessellation 

we have only finitely many copies of Pa- Thus we must have the same number of 

blue edges, and of red edges, contradicting the fact that  each tile has more red 

edges. | 

The following theorem provides another criteria for showing that  a given tiling 

system cannot tessellate a compact quotient of ~lr 2. This may be applied to 

establish the aperiodicity of the tiling systems of Theorem 5 as well as that  of 

the tiling systems corresponding to the quadrangles constructed in the proof of 

Theorem 4. 

THEOREM 6: Let 7- be a tiling system consisting of finitely many convex polygons 

{Pi}. Let ill, t32, .. . , flk be the distinct angles appearing in tiles of T.  Associate 

to each of  the polygons Pi a vector 

, , ' ' ' ,  

\ si si si / 

where x} is the number of angles of Pi which are equal to flj and si is the number 

of vertices of Pi. Let F c N k be the convex hull of these vectors. Consider the 

set 

k k 

' s " " '  c j E  = 2zr or~r, a n d s =  . 
j----1 j = l  
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If  the convex hull of C is disjoint from F then T does not admit a tessellation of 

any compact quotient of ~ .  

Proof: Suppose there exists a tessellation of some compact quotient of ~ by 

tiles of T.  Calculating the relative frequency of each of the angles f~j, 1 ~ j <_ k, 

in such a tessellation in two ways shows that the two convex sets F and conv(C) 

must intersect. | 
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